
Abstract of Paper Proposed for Presentation at the

40th AIAA Aerosciences Meeting and Exhibit

Reno, NV

January, 2002

Automation of a N-S S&C Database

Generation for the Harrier in Ground Effect

Scott M. Murman*

ELORET

Moffett Field, CA 94035

smurman@nas.nasa.gov

Neal M. Chaderjiantand Shishir Pandya t

NASA Ames Research Center

Moffett Field, CA 94035

Abstract

A method of automating the generation of a time-dependent, Navier-Stokes

static S&C database for the Harrier aircraft in ground effect is outlined. Reusable,

Rghtwcight components arc descsribed which allow differcm facets of the CFD

simulation process to utilize a consistent interface to a remote database. These

components also allow changes and customizations to easily be facilitated into

the solution process to enhance performance, without relying upon third-party

support. An analysis of the multi-level parallel solver OVERFLOW-MLP is

presented, and the results indicate that it is feasible to utilize large numbers of

processors (_ 100) even with a grid system with relatively small number of cells

(_ 106). A more detaileddiscussionof the simulation process,as wellas refined

data for the scalingof the OVERFLOW-MLP flow solver willbe included in

the fullpaper.

*SeniorResearch Scientist,Member AIAA

tResearch Scientist,AssociateFellowAIAA

tResearchScientist,Member AIAA

1 Introduction

The Harrier is a V/STOL aircraft that can take-off and land vertically, or utilize

very short runways, by directing its four exhaust nozzles towards the ground. Transi-

tion to forward flight is achieved by rotating these nozzles into a horizontal position.

Powered-lift vehicles such as the Harrier have certain advantages over conventional

aircraft. Their V/STOL capabilities allow for safer carrier operations, smaller carrier

size, and allow for quick reaction time for troop support. They also are not depen-

dent on vulnerable land-based runways. The AV-8A was the first service-version of

the Harrier, and the AV-8B was a later redesign for improved payload capacity and

range (cf. Siuru [1]). The current work utilizes a version of the AV-SB design. The

success and unique capabilities of the Harrier has prompted the design Of a powered-

lift version of the Joint Strike Fighter (JSF).

The flowiield for the Harrier near the ground during very low-speed or hover flight
• , • _ o °

operations Is very complex and t_ne-dependent. A Computational Flmd Dynam-

ics (CFD) simulation of this flowiield is shown in Fig.1. Warm air from the fan is

exhausted from the front nozzles, while a hot air/fuel mixture from the engine is

exhausted from the rear nozzles. These jets strike the ground and move out radially

forming a ground jet-flow. The ambient freestream, due to low-speed forward flight

or headwind during hover, opposes the jet-flow. This interaction causes the flow to

separate and form a ground vortex which can be unsteady, changing size and position

at low frequency. The multiple jets also interact with each other near the ground

and form an upwash, or jet fountain, which strikes the undersic_e of the fuselage. If
the aircraft is sufficiently close to the ground, the inlet can ingest ground debris and

hot gasses from the fountain and ground vortex. This Hot Gas Ingestion (HGI) can

cause a sudden loss of thrust (lift), imparing vehicle safety. The high-speed jet flow

along the ground can also entrain the ambient flow, resulting in a low pressure region

underneath the vehicle, leading to what is referred to as the "suckdown effect".

A number of numerical and experimental investigations have been carried out

to better understand the complex time-dependent flows associated with powered-

lift vehicles. One approach has been to simplify the geometry to study the basic

flow physics. Van Dalsem et.al. [2] performed time-dependent Reynolds-averaged

Navier-Stokes (RANS) simulation using a delta wing with two aft mounted thrust-

reverser jets in close proximity to the ground plane. These computations captured

the loss of lift near the ground associated with the suckdown effect, and the small

drop-off of lift at higher locations associated with the conventional ground cushion

effect. Preliminary results were also presented for a Harrier YAV-8B forebody and

inlet. Chawla and Van Dalsem [3] carried out time-accurate laminar flow simulations

using the same delta wing geometry of [2]. Static flow simulations were computed

at varying heights above the ground plane, as well as a single maneuver simulation

with the delta wing descending towards the ground plane. The static cases showed

the expected trends between the lift coefficient and height, including the suckdown

and cushion effects. The flows were found to be unsteady, with Strouhal numbers

Figure 1: Harrier jet fountain and ground vortex. Streaklines are colored by temper-

ature.

ranging from 0.015 to 0.03, and certain approximations had to be made in order to

reduce the long compute times. Roth [4] also carried out time-dependent RANS flow

simulations about a simplified powered-lift geometry, which consisted of a cropped

delta wing with a blended fuselage and two circular jets mounted in tandem on the

underside of the wing. Laminar and turbulent static flow simulations were computed

and compared against experimental data.

There have been several RANS computations using simplified Harrier geometries.

Gea et.al. [5] and Mysko et al. [6] both computed steady transonic flow (out of ground

effect) about Harrier wing/fuselage configurations. Smith et al. [7] presented a time-

dependent RANS solution about a simplified YAV-8B Harrier in ground effect. To

date, this represents the only RANS solution about a fairly complete Harrier aircraft

in gL-ouud effect. In order to offset the very long compute times, certain simplifications

were made to the time-accurate approach.

The purpose of this paper is to describe a process that has enabled 45 time-
accurate RANS simulations about a YAV-SB Harrier aircraft in ground effect to

be computed. The eventual goal is to compute enough solutions to define a static

stability and control (S&C) database. As a first approximation, it's been assumed that

the parameters which affect a vehicle in ground effect (to leading order) are the height

above the ground plane (h), the angle of attack (a), and the freestream Mach number

(M_¢). The focus of the current work is on the solution process itself, as opposed to
the results of the simulations. The results will be described in detail in a companion

paper by Chaderjian [8]. In order to compute a S&C database using time-dependent

CFD simulations, it's necessary to automate as much of the process as possible, from

mesh generation to post processing. This paper describes a strategy that allows this

automation, as wellas stillprovidingthe abilityto easilyextend and customize the

processwithout relyingupon cumbersome softwareor third-partysupport. Another

focusofthe currentwork isthe parallelefficiencyofthe flowsimulationprocess,as an

efficientflowsolverisneccessaryinorder to compute a time-dependent low frequency

flowfield.The efficiencyof the OVERFLOW-MLP solver,and it'sinteractionwith

the runtime environment are examined.

The firstsectiondescribesthe detailsofthe computional mesh that was utilized,

and the automatic generationof configurationsforthe differentheightsand anglesof

attack requiredto fillthe S&C database. Next the efficiencyof the flow solverand

the embarrassinglyparallelsolutionstrategyare described,followedby a description

of the post-processingtools.

2 Computational Mesh

Numerical simulationof the Harrier in ground effectcombines the complex ge-

ometry of a full-aircraftconfiguration,and the complex physicsof a jet in crossflow

impinging on a ground plane. In order to accuratelysimulate thistype of flowfield,

Navier-Stokessimulationsare required to resolvethe viscousjet impingement on the

ground plane,the interactionof the jet and ground vortex "fountain"with the air-

craft,as wellas the featuresof the jetsin crossflowthemselves (cf.Fig.1). An overset

gridstrategy(cf.[9,I01)was chosen due to the complex geometry and complex physics

encountered. Using oversetgridsallowsdifferentregionsofthe flowfield,which require

differentlevelsof physicalmodeling, to be easilyhandled, and Che relevantfeatures

ofthe geometry can be easilymodeled. Firstan overview ofthe computational geom-

etry and oversetgridsystem isprovided,then the detailsof the automation process

requiredto generateseparategridsystems foreach aircraftconfigurationispresented.

2.1 Overset Grid System

The initial definition of the Harrier YAV-8B geometry, was obtained from the

work of Smith et al. [7]. The definition used in [7] did not include several features of

the aircraft, and these were added from the original "lofting-line" data supplied by

the then McDonnell Douglas Aircraft Company. Figure 2 shows the computational

geometry used in the current study. Most of the major components of the aircraft are

modeled, including the wing with leading-edge root extension (LERX), empennage,

engine inletregion,and the two engine exhaust nozzles.The engine exhaust nozzles

are scheduled81 degrees from the aftposition,again followingthe work of Smith et

al.The engine thrustratingused forallcalculationswas "short-liftwet". In addition,

the positivecirculationflapsare alsomodeled in theirfully-deflectedposition.Due to

time constraints,itwas not possibleto model the fuselagegun pod/lift-improvement

devices(LIDS).

Viscous body-conforming grids were generated about the relevant features of the

4

Figure 2: Computationalgeometryfor Harrier YAV-8B

Figure 3: Harrier oversetsurfacemeshdefinition

v-

V_m-O Vma n V.

/ ,/

(a) (b) (¢)

Figure 4: Aircraft frame of reference transformations including ground plane

Harrier geometry, and the overlapping :§urfaces are shown in Fig. 3. The height of

the first cell above the solid surface was specified such that y+ < 5.0 in each zone,

which was found to be sufficient to resolve the viscous stresses on the surface during

a takeoff or landing scenario. The Reynolds number is 12 million, based on the

aircraft length. An inviscid Cartesian grid, here called the "near-body Cartesian

box", was created to surround the viscous grids with little overlap, and portions

of this Cartesian grid which were interior to the solid surface of the aircraft were

removed using the overset hole-cutting procedure (cf. Fig. 3). This provided a region

surrounding the aircraft which could be placed at any height and orientation relative

to a ground plane, without affecting any of the intergrid connectivity between the

viscous zones. In other words, the viscous zones and near-body Cartesian box could

be processed through the overset connectivity code (Pegasus) once, and then utilized

for every configuration without any changes. All of the surface and volume meshes

were created using the OVERGRID tool for overset grids developed by Chan [11].

The viscous body-conforming grids, along with the fiear-body Cartesian box comprise

45 zones and 2.4 million grid points.

2.2 Process Automation

Simulating the Harrier in ground effect requires proper treatment of the air-

craft/ground plane interaction, which varies from the usual treatment of an aircraft

in flight. Fig. 4 shows the reference frame transformations that can be applied to an

aircraft in ground effect. Figs. 4b and c would be suitable for a numerical simulation

using a fixed grid system, as is used in the current work. Reference frame b) was cho-

sen for this work, so that the flow visualization could take place in a natural frame

of reference.

The viscous body-conforming region was combined with the automated script

system developed for the High Wing Transport [12], in order to develop a system

which could automatically generate the complete system for the aircraft and ground

---L

t

Figure 5: Viscous ground plane and inviscid outer field zones

plane in combination. The script system allowed the processing to be performed

in two steps; first the aircraft was placed at the desired height and orientation and

the viscous intergrid connectivity was established, then the ground plane and farfield

grids were placed around the aircraft, and the complete connectivity was determined.

An example complete grid system is sho_ in Fig. 5. The jet exhaust rc_E,3n was

modeled using viscous Cartesian zones which are generated specifically for each height

and angle of attack. The viscous ground plane is broken into three regions to allow

higher resolution directly under the aircraft where the jet impingement creates large

gradients. The final grid system consists of 52 zones, and 3.6 million grid points for

the configuration with the aircraft at 30 feet above the ground plane. The number

of grid points changes with height, due to the generation of specific grids for the jet

region at each height, as will be discussed below. The system has been validated

by computations and comparisons to the previous computational results of Smith et

al. [7]. These comparisons with previous computational work and other flight-test

data will be included in the complete paper.

In order to avoid generating field grids specifically for each configuration, a general

set of field grids were created and an overset hole-cutting procedure was used to

7

eliminate portions of the grids which weren't necessary, depending upon the aircraft

height. For example, the green inviscid grid in Fig. 5 actually extends above the

aircraft, however that portion is removed by the red grid which surrounds the aircraft

box. Similarly, depending upon the height and angle of attack, the red outer zone and

jet grids may extend below the viscous ground plane, so a cutting plane is established

to remove them if necessary. In this manner, some points aren't utilized due to the

hole cutting procedure, but there is no need to generate separate field grids for each

configuration. The exception to this strategy is the viscous zones which model the jet

convection to the ground plane. These zones are computed using a complete Navier-

Stokes algorithm, as opposed to the thin-layer Navier-Stokes approximation which is

used for the body-conforming viscous zones. Hence these jet grids are both dense and

expensive to compute. Instead of removing portions of the jet grids using an overset

hole-cutting procedure, which would lead to expensive computations essentially being

thrown away due to the iblank logic, these grids were generated specifically for each

height and then rotated into position relative to the aircraft based on the angle of
attack.

The wallclock time required to generate a single overset grid system, including

storing the files on a remote database, was approximately 10 minutes. The processing

system was a 2-CPU desktop workstation, and Pegasus 4.1 [13] was used as the overset

grid processing software.

3 Remote Database Interface
t

Computing an S&C database involves performing a parametric study of the forces

and moments on the aircraft. In this work, the parameters of interest were chosen

to be the height of the vehicle above the ground plane, the angle of attack, and the

freestream Mach number (h, a, and Moo). Working with such a parameter space,

it's desirable to automate as much of the solution, process as possible - from mesh

generation to post-processing of the computed results. This automation speeds the

overall process and minimizes human errors. To this end, a modular script system was

developed that allowed different facets of the solution process co utilize a consistent
interface and set of tools.

This script system was implemented using the Perl language. Perl was chosen

because it is an object-oriented language which encourages the re-use of components,

and it's a powerful interpreted language which can fulfill all of the needs of the script

system without resorting to creating specialized compiled binaries, or mixing script-

ing languages. One of the requirements on the script system for the current work was

to manage a heterogeneous, specialized computing environment. In this environment,

each computer (or group of computers) has a specific dedicated task - one machine

is dedicated to archival storage, one machine is dedicated to high-performance com-

puting, one machine is dedicated to post-processing and flow visualization.

The backbone of the script system is an interface to an S&C database stored on a

8

Remote]

Single, Static Interface
to Database

Mesh

Generation

Flow Solver

Run Scripts

Post

Processing

Figure 6: Schematic of remote database interface concept.

remote archival storage system. All interaction with the database utilizes this same

interface (cf. Fig. 6). The interface to the remote database is implemented using a Perl

module (object). In an object-oriented fashion, the interface is considered static and

is the means by which clients (the application scripts in this instance) interact with

the database. The actual implementation details behind the interface are hidden from

clients and hence can be changed at any time, provided that the interface remains

static. This allows the design to evolve with the needs and abilities of the rest

of the system. For example, currently the database is implemented simply using

a UNIX file and directory structure. If this was replaced with a more sophisticated

database software tool, no'he of the application scripts would need to be changed. The

application scripts are not even aware that the data is stored remotely. The interface

currently supports several low-level methods, such as "copy-to", "copy-from", etc.

from which higher-level tools can be developed. In practice, an application script

would issue a command and provide the current parameter values (Moo, a, h), and

the Perl implementation stores the file in the proper location within the database.

All files are stored in the database as read-only to prevent multiple users or runaway

processes from overwriting entries in the database.

Using the remote database module, scripts were developed to generate the overset

grid system, run the flow solver, and post-process the results through a GUI (written

using Perl-Tk). In this manner, not only is there considerable software re-use among

the various scripts, but an entirely new database can be accessed simply by creating

a new specific instance of the remote database module, i.e. the higher-level scripts

do not need to change to compute a new database. The scripts which run the flow

solver are briefly described in Sec. 4, while the post-processing tools are discussed in

Sec. 5.

9

4 Simulation Process

4.1 OVERFLOW-MLP Solver

One of the goals of the current project is to utilize large-scale parallel comput-

ers, such as the NASA Ames 512-processor R12000 SGI Origin 2000 (O2K) machine,

to compute the S&C database. The SGI O2K is a shared-memory, multi-processor

(SMP) machine. A version of the OVERFLOW solver [14], called OVERFLOW-MLP

(for "multi-level parallelism"), has been developed by Taft [15] for use on these types
of architectures. The OVERFLOW-MLP solver utilizes two levels of parallelism -

domain decomposition, and procedural (or loop-level) parallelism. The domain de-

composition scheme is implemented on top of the "production" version of the parallel

OVERFLOW solver.

As the OVERFLOW-MLP solver uses two methods of parallelization, there are

combinations of parameters that can b'e varied to effect performance of the code.

The main parameters are the number of processors per domain (which can vary

from one domain to the next), the number of domains, and the total number of

processors utilized. As a large number of cases are required to fill the S&C database,

some experimentation was performed to determine an optimum configuration of the

OVERFLOW-MLP control parameters for the current problem configuration.

Initially it was found that the OVERFLOW-MLP solver did not provide good a

good load balance when used as a pure domain decomposition parallel solver. This

was caused by the load-balancing routine ignoring the type of scheme used in a

particular overset zone (e.g. inviscid vs. viscous), and simply us_g the total number

of grid points in an overset zone to determine the weighting strategy. In many cases

this strategy is effective, however in the current work the jet grids are both large and
contain the full viscous terms. This makes these grids much more computationally

expensive than the Euler or thin-layer N-S grids,, and hence caused problems for

the simplistic load-balancing algorithm. A weighting based upon the type of scheme

used in each zone was added to the load-balancing algorithm, and this improved

the performance of the pure domain decomposition scheme. Even ._.dth this modest

improvement, the load-balancing algorithm is still not performing as desired, and a

new scheme will likely be developed. The details and performance of this new scheme

will be detailed in the full paper.

Using the OVERFLOW-MLP code essentially as a pure domain-decomposition

scheme (i.e. using 1 CPU per domain), it was efficient to compute using 16 CPUs for

the current Harrier application. This was suitable for computing a database using

the embarrassingly-parallel approach to be discussed in the next section, however

it is still desirable to utilize large numbers of CPUs in order to explore database-

fill methods other than the brute force approach, and for future work simulating

vehicle maneuvers. Figure 7 shows the parallel speedup when computing the Harrier

configuration for 500 physical timesteps: using a variety of domain sizes and CPUs.
The ideal time was chosen as the 16 CPU pure domain decomposition configuration,

10

8 ' I ' I ' I _ I ' I ' I ' I _f '
/

.

i'
,o 4 j nl4

7 a3_ 026

. ' ,
.L.,_'_, ia_t, I , I , i , I , I , L

1 I"6 32 48 64 80 96 112 128

Number of CPUs

Figure 7: Parallel speedup for the OVERFLOW-MLP code computing the Harrier

configuration (SGI R12000 O2K).

so that all data could be referenced to a single value making a comparison meaningful.

All of the timings were obtained when the machine was under normal load, so some

variability in the timings is expected. It's seen that while some configurations can

provide reasonable performance using 32 CPUs, none of the options performs well

using more processors, t

The main contributing factor to the poor parallel efficiency with large numbers of

processors is the scalability of the underlying procedural parallelism in the production

OVERFLOW code. For a multi-level parallelism scheme, such as the OVERFLOW-

MLP code, the total parallel efficiency (r/T) can be viewed as a multiplicative product

of the domain-based efficiency (?]D), and the procedural efficiency (r/p)

(1)
rlT ---- riD " UP -- WiN " N

where WtN is the walltime using N CPUs. Since rtr and r/D can be measured directly,

the procedural efficiency can be calculated. Reducing the data in Fig. 7 using Eqn. 1

(using the timing on 16 CPUs as a reference instead of a single CPU), leads to a

procedural efficiency curve for the underlying algorithm for the Harrier application

(cL Fig. 8). Note that the average number of CPUs per domain is utilized as the

abscissa. It's seen that all of the computations are collapsing to the same curve, to

within the variability of the timing data. Further, the procedural efficiency reduces

quickly, so that with 4 CPUs/domain the procedural efficiency has already dropped

to about 80% for this application. This means that if the load balancing is only 80%

efficient, the overall efficiency of the code will only be 64%, and it is this multiplicative

factor which leads to the degraded performance with large numbers of CPUs seen in

Fig. 7.

11

0.8

0.6

' I ' I ' I ' I '

16 CPUs D,,..............._ _

32 CPUs
48 CPUs
64 CPUs

-_ 96 (:PUs
128 CPUs

-- Ideal

i I i I i I a I a
0"40 2 4 6 8 lO

-Nc_,/N _

Figure 8: Procedural efficiencyforthe OVERFLOW-MLP code computing the Har-

rierconfiguration(SGI R12000 O2K).

Following the above analysis, in order to utilize larger numbers of processors effi-

ciently (approaching 128 CPUs) without requiring major changes to the OVERFLOW-

MLP code, it's seen as nec.essary to increase the number of overset zones by splitting

existing large zones, and then utilize a low number of processors per zone. This will

provide a combination of good load balancing and good loop-level parallelism that is

required for the multi-level parallel code. Preliminary results using this approach have

been successful at utilizing more processors efficiently for the Harrier application, and

a discussion of the complete results will be included in the full paper.

4.2 Script System

In order to compute an S&C database, it's desirable to take advantage of the "em-

barrassingly parallel" nature of the problem. In other words, since each configuration

is essentially an identical problem with varying inputs, it's possible to compute several

database parameters together in parallel and hence reduce the total wallclock time

required to compute the entire database. For the Harrier application, the parameters

of interest are height, angle of attack, and Mach number (cf. Sec. 1).

Two scripts were written to control the flow solver; the first runs the flow solver

for a single set of parameters, while the second runs multiple concurrent sessions of

the flow solver, each with a different set of parameters. The script for running a single

job* manages retrieving the latest flow solution from the remote database, setting up

the input files, running the flow solver, checking if the flow solver executed properly,

and then storing the new flow solution to the remote database. Since the flowfield in

*A job is a particular set of parameters, with a specific input file, flow solver, etc.

12

t

[_
_,] ,,-,o.,,-7

Figure 9: Schematic of running multiple concurrent jobs

the current work is unsteady, this process must be iterated many times in succession.

The locations of the various files (both remotely and on the local high-performance

computing machine) and the iiow solver inputs, are all determined based upon the

parameters within the database matrix.

The script which runs multiple concurrent jobs leverages the work of the script

which runs a single job. The multiple job script sets up a matri_ of jobs to run, and

then "launches" (literally forks()) an instance of the single job script for each set of

parameters (cf. Fig. 9). The multiple job script then waits for the single instances to

finish, and when one does another job can be launched. When all of the jobs have

finished the script exits.

When working on an SMP architecture it can be difficult to run multiple in-

stances of the same executable concurrently on a dedicated set of processors with-

out the multiple instances interfering with each other and greatly reducing the ef-

ficiency of the parallel flow solver. The initial database computations (performed

in March-April, 1999) had no way to account for processor interference, and hence

the "embarrassingly-parallel efficiency" was not 100%. Rather, the average wallclock

time required for a single database point when multiple concurrent computations were

performed was roughly 1.3 times that required for a single computation in isolation.

On the NASA Ames O2K machines running the portable batch system (PBS), a

"nodemask" variable is supplied to each batch job. This nodemask variable specifies

the subset of the machines processors which the current batch session can access.

The recent versions of the OVERFLOW-MLP code use the nodemask variable to

execute a pin-to-node strategy, whereby the domain decomposition assigns domains

to specific processors for the duration of the flow solver execution, rather than allowing

the OS to dynamically balance the CPU usage. When running multiple concurrent

13

versions of the OVERFLOW-MLP executable, it's thus necessary to apply another

mask to the nodemask variable that PBS provides - a so-called "job mask" which

specifies the processors which each specific job should utilize. In other words, if 16

processors are supplied by PBS, and it's desired to run 4 concurrent jobs, the job

mask would mask portions of the original 16 processors so that 4 distinct processors

are available to each job. This was done by creating a Perl module which stores

the original PBS nodemask variable, and then portions it out to each job that is

launched so that no two jobs can access the same processor (cf. Fig. 9). In this

manner, concurrent versions of the same executable can be run without processor

interference, and without requiring modification of the flow solver code. Using the

job nodemask and the pin-to-node strategy, the embarrassingly-parallel efficiency

when running multiple concurrent cases was indistinguishable from the theoretical
maximum of 100%.

5 Post Processing

As with the mesh generation and flow simulation processes, when analyzing hun-

dreds (or more) of CFD simulations it's desirable to automate much of the post-

processing analysis. This automation can also be used to "mine" the database for

interesting or critical points, as well as obtain general structures. As was discussed

in Sec. 3, a GUI tool was built upon the remote database interface using Perl-Tk and

utilized to perform post-processing analysis of the S&C database.

The GUI tool, referred to as "DBview", has two main modes _f operation; interac-

tive and batch processing. In interactive mode DBview is itself in some sense simply

a layer between the remote database and analysis application software residing on

the engineers desktop machine. For example, DBview does not provide any graphical

plotting capability, rather it retrieves the relevant data from the remote database and

calls a third-party graphical application to display and analyze the results. In batch

processing mode, a number of database entries can be selected to have certain tasks

performed (with the results to be stored in the remote database), and the DBview

tool again simply manages the data movement and choosing the proper application

to run. With this approach, the GUI tool is both open-ended, since new third-party

applications can simply be added as necessary, and lightweight, as the GUI simply

must manage user input and data movement without needing to perform complicated

or specialized analysis tasks.

The DBview "front-end" is shown in Fig. 10. Access tabs for choosing the desired

database are in the upper left of the interface. In this example, the two possible

databases are "Baseline" and "SNC01". The parameters shown in the selection area

below the tabs change to those appropriate for the chosen database. Once the pa-

rameters are selected, the user can choose one or more of the check-buttons on the

top right side of Fig. 10 to interrogate the grid and solution, or to view the load

histories. Selecting the "grid" or "solution" check-button and pressing the "Get and

14

t

r,

Figure 10: Database post-processing graphical user interface.

Plot File" button results in the retrieval of the appropriate files from the database

followed by an interactive flow visualization session To aid the analysis, pre-loaded•

flowfield visualizations are available, and can either be printed to hardcopy or stored

in the remote database. An example of this "thumbnail" analysis is shown in Fig. 11.

The GUI tool can take arbitrary slices through the data, including constant planes,

vectors, or arbitrary isolated points in the database. The main interactive features

of the tool axe graphical plotting of the load histories*, and 3-D visualization tools.

An example of the load history post-processing is shown in Fig. 12. Arbitrary entries

in the database can be selected and are automatically retrieved from the remote

database and plotted in a third-party application. The labels and legends are also

automatically generated.

6 Summary

A method of automating the generation of a time-dependent, Navier-Stokes static

S&C database for the Harrier aircraft in ground effect has been outlined. Lightweight

reusable components were created which allowed different facets of the CFD simula-

tion process to utilize a consistent interface to a remote database. These components

*All of the computed solutions are time-dependent, hence the time-history of the load variation

must be plotted, not just a steady-state value.

15

@

.o,

Mach Number--0.05, Height=10ft, Alpha---gdcg, R_ 15.2E06

• . • . _ • -:_,_.

Figure 11: Pre-loaded "thumbnail" composite flow visualizations.

16

Lift History

0

-0.25

-0.5

-0.75

-1
0 4 8 12

Physical Time(seconds)

Figure 12: Example of post-processing time-dependent load histories.

also allowed changes and customizations to easily be facilitated into the solution pro-

cess to enhance performance without relying upon third-party support. An analysis

of the multi-level parallel solver OVERFLOW-MLP was presemted, and the results

indicate that it is feasible to utilize large numbers of processors (_ 100) even with a

grid system with relatively small number of cells (_ 106). The full paper will include

a more detailed discussion of the simulation process, as well as refined data for the

scaling of the OVERFLOW-MLP flow solver.

References

[1]

[2]

[3]

[4]

Siuru, W. D., British Aerospace and McDonnell Douglas Harrier A V-8A/B. Aero

Publishers, Inc., 1985.

Van Dalsem, W. R., Chawla, K., Smith, M. H., and Abeloff, P. A., "Numerical

Simulation of Powered-Lift Flows," in International Powered LiB Conference

Proceedings, pp. III.16.1-14, The Royal Aeronautical Society, 1990.

Chawla, K., and Van Dalsem, W. R., "Numerical Simulation of a Powered-Lift

Landing," AGARD-CP 534, 1993.

Roth, K. R., "Comparison of Computation with Experiment for a Geometri-

cally Simplified Powered-Lift Model," AIAA Journal of Aircraft, vol. 34, no. 2,

pp. 160-167, 1997.

17

,t

J

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Gea, L. M., Chyu, W. J., Stortz, M. W., Roberts, A. C., and Chow, C. Y., "Flight
Test and Numerical Simulation of Transonic Flow Around YAV-SB Harrier II

Wing," AIAA Paper 91-!628, 1991.

Mysko, S. J., Chyu, W. J., Stortz, M. W., and Chow, C. Y., "Navier-Stokes

Simulation of External/Internal Transonic Flow on the Forebody/Inlet of the

AV-SB Harrier II," AIAA Paper 93-3057, 1993.

Smith, M.H., Chawla, K., and Van Dalsem, W. R., "Numerical Simulation of

a Complete STOVL Aircraft in Ground Effect," AIAA Paper 91-3293-CP, July
1991.

Chaderjian, N.M., Pandya, S., Murman, S.M., and Ahmad, J., "Parametric

Time-Dependent Navier-Stokes Computations for a YAV-8B Harrier in Ground

Effect," submitted for publication at AIAA 40th Aerospace Sciences Meeting.

Benek, J.A., Buning, P.G., and Steger, J.L., "A 3-D Chimera Grid Embedding

Technique," AIAA Paper 85-1523, July 1985.

Buning, P.G., Chiu, I.T., Obayashi, S., Pdzk, Y.M. and Steger, J.L., "Numerical

Simulation of the Integrated Space Shuttle Vehicle in Ascent," AIAA Paper 88-

4359-CP, Aug. 1988.

Chan, W.M., Meakin, R.L., and Potsdam, M.P., "CHSSI Software for Geomet-

rically Complex Unsteady Aerodynamic Applications," AI/_:A Paper 2001-0593,
Jan. 2001.

Rogers, S. E., Roth, K., Nash, S. M., Baker, M. D., Slotnick, J. P., Whitlock,

M., and Cao, H. V., "Advances in Overset CFD Processes Applied to Subsonic

High-Lift Aircraft," AIAA Paper 2000-4216, Aug. 2000.

Suhs, N.E. and Tramel, R.W., "Pegsus 4.0 User's Manual," AEDC Tech. Report

TR-91-8, 1991.

Buning, P.G., Jesperson, D.C., Pulliam, T.H., Chan, W.M., Slotnick, J.P., Krist,

S. E., and Renze, K.J., OVERFLOW User's Manual. NASA.

Taft, J.R., "Multi-Level Parallelism, A Simple Highly Scalable Approach to Par-

allelism for CFD," in HPCCP/CAS Workshop 98 Proceedings (C. Schulbach,

ed.), 1998.

18

